Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Tipo de estudio
Intervalo de año de publicación
1.
Microb Drug Resist ; 26(12): 1546-1558, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32429830

RESUMEN

Disinfection and antisepsis are of primary importance in controlling nosocomial infections and outbreaks by pathogens expressing multiple resistance to antimicrobial agents (multidrug-resistant [MDR]) used in therapy. Nowadays, infections related to health services (HAIs) due to MDR and multidrug-susceptible (MDS) Corynebacterium striatum should not be underestimated, including patients using invasive medical devices. The virulence potential of C. striatum needs further investigation. Currently, susceptibility profiles of planktonic and/or sessile forms of four C. striatum strains of different pulsed-field gel electrophoresis types were examined as biocides based on the manufacturer's recommendations: 2% glutaraldehyde (GA), 2% peracetic acid (PA), 1% potassium monopersulfate (Virkon®; VK), 1% sodium hypochlorite (SH), and 70% ethyl alcohol (ET). Time-kill assays using 2% bovine serum albumin (BSA) were performed for evaluation of influence of organic matter on biocides effects. Planktonic forms expressed GA resistance at different levels. C. striatum viability was observed until 2, 4, 20, and 30 min for MDR 2369/II, MDS 1954/IV, MDR 1987/I, and MDS 1961/III strains, respectively. In contrast to GA, the biocides PA, VK24h, SH, and ET had higher effective bacterial mortality. However, storage of VK (48 hr) reduced their biocide activities. Moreover, mature biofilms were produced on abiotic substrates, including steel surfaces. Post-treatment with GA (30 min), survival of sessile forms was ≥100% than planktonic forms of all C. striatum tested strains. Independent of biocides tested, BSA increased the survival of planktonic and sessile forms (p ≤ 0.005). Present data indicated that hospital staff should be aware of dissemination and eradication of HAIs by C. striatum presenting resistance to biocides, including high-level disinfectants, such as GA.


Asunto(s)
Antiinfecciosos Locales/farmacología , Biopelículas/efectos de los fármacos , Corynebacterium/efectos de los fármacos , Desinfectantes/farmacología , Farmacorresistencia Bacteriana Múltiple , Plancton/efectos de los fármacos , Adulto , Infección Hospitalaria/prevención & control , Electroforesis en Gel de Campo Pulsado , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Virulencia
2.
Antonie Van Leeuwenhoek ; 112(9): 1331-1340, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31055716

RESUMEN

Corynebacterium striatum strains have been increasingly reported as etiological agents of nosocomial infections and outbreaks in industrialized and developing countries. However, there are few studies focused on the virulence potential of C. striatum. A growing body of research supports the use of Caenorhabditis elegans as a model host for investigating the virulence potential of pathogenic bacteria, including corynebacteria. In the present study, chemotaxis behaviour, mortality, and morphological changes were investigated in nematodes infected by four C. striatum strains isolated from different clinical sites, and with different MDR profiles and PFGE types. The results showed chemotaxis of nematodes towards C. striatum. Nematode death (> 60%) was detected from the first day post-infection with all strains tested, but at different levels, independent of biofilm formation on catheter surfaces and differences in growth temperature between nematodes (20 °C) and mammals (37 °C). C. striatum 2369/II multidrug-resistant (MDR; from tracheal aspirate of a patient undergoing endotracheal intubation) and 1961/III multidrug-sensitive (MDS; urine) strains led to 100% mortality in worms. Survival of nematodes was observed until 4 days post-infection with the C. striatum 1954/IV MDS strain isolated from a surgical wound (13%) and 1987/I MDR strain isolated from a patient with a lower respiratory tract infection (39%). The Dar phenotype was observed post-infection with all MDS and MDR strains except 1954/IV. All strains showed the capacity for bagging formation. Star formation was observed only with strains that led to 100% nematode mortality. In conclusion, C. striatum was found to exert virulence for C. elegans. Variations in nematode morphological changes and levels of mortality indicate differences in the virulence potential of C. striatum independent of clinical isolation site, capacity for biofilm formation, and MDR and PFGE profiles.


Asunto(s)
Caenorhabditis elegans/microbiología , Infecciones por Corynebacterium/microbiología , Infecciones por Corynebacterium/patología , Corynebacterium/crecimiento & desarrollo , Corynebacterium/patogenicidad , Animales , Caenorhabditis elegans/fisiología , Corynebacterium/clasificación , Corynebacterium/aislamiento & purificación , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple , Electroforesis en Gel de Campo Pulsado , Humanos , Análisis de Supervivencia , Virulencia
3.
Mem Inst Oswaldo Cruz ; 110(2): 242-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25946249

RESUMEN

Corynebacterium striatum is a potentially pathogenic microorganism that causes nosocomial outbreaks. However, little is known about its virulence factors that may contribute to healthcare-associated infections (HAIs). We investigated the biofilm production on abiotic surfaces of multidrug-resistant (MDR) and multidrug-susceptible (MDS) strains of C. striatum of pulsed-field gel electrophoresis types I-MDR, II-MDR, III-MDS and IV-MDS isolated during a nosocomial outbreak in Rio de Janeiro, Brazil. The results showed that C. striatum was able to adhere to hydrophilic and hydrophobic abiotic surfaces. The C. striatum 1987/I-MDR strain, predominantly isolated from patients undergoing endotracheal intubation procedures, showed the greatest ability to adhere to all surfaces. C. striatum bound fibrinogen to its surface, which contributed to biofilm formation. Scanning electron microscopy showed the production of mature biofilms on polyurethane catheters by all pulsotypes. In conclusion, biofilm production may contribute to the establishment of HAIs caused by C. striatum.


Asunto(s)
Biopelículas/efectos de los fármacos , Infecciones Relacionadas con Catéteres/microbiología , Infecciones por Corynebacterium/microbiología , Corynebacterium/fisiología , Infección Hospitalaria/microbiología , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple , Adulto , Antibacterianos/farmacología , Adhesión Bacteriana/fisiología , Brasil/epidemiología , Infecciones Relacionadas con Catéteres/epidemiología , Corynebacterium/clasificación , Corynebacterium/ultraestructura , Infecciones por Corynebacterium/epidemiología , Infección Hospitalaria/epidemiología , Electroforesis en Gel de Campo Pulsado , Equipos y Suministros , Femenino , Fibrinógeno/farmacología , Vidrio , Humanos , Masculino , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Poliuretanos , Factores de Virulencia
4.
Mem. Inst. Oswaldo Cruz ; 110(2): 242-248, 04/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-744474

RESUMEN

Corynebacterium striatum is a potentially pathogenic microorganism that causes nosocomial outbreaks. However, little is known about its virulence factors that may contribute to healthcare-associated infections (HAIs). We investigated the biofilm production on abiotic surfaces of multidrug-resistant (MDR) and multidrug-susceptible (MDS) strains of C. striatum of pulsed-field gel electrophoresis types I-MDR, II-MDR, III-MDS and IV-MDS isolated during a nosocomial outbreak in Rio de Janeiro, Brazil. The results showed that C. striatum was able to adhere to hydrophilic and hydrophobic abiotic surfaces. The C. striatum 1987/I-MDR strain, predominantly isolated from patients undergoing endotracheal intubation procedures, showed the greatest ability to adhere to all surfaces. C. striatum bound fibrinogen to its surface, which contributed to biofilm formation. Scanning electron microscopy showed the production of mature biofilms on polyurethane catheters by all pulsotypes. In conclusion, biofilm production may contribute to the establishment of HAIs caused by C. striatum.


Asunto(s)
Adulto , Anciano , Humanos , Persona de Mediana Edad , Pie , Atención de Enfermería , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...